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Bond percolation on a dilute lattice with short and long range correlations:
A numerical simulation
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The quenched percolation problem on a dilute lattice with a given random structure of vacancies is analyzed
by numerical simulations id=2 andd=3. The distribution of the sites of the dilute lattice satisfies the static
structure factoS(k) =ak 2+b and contains short ranga£0) and long rangeg>0) effects, respectively.

The numerical simulation shows that the critical behavior of the percolation on lattices with short range
correlations &€=0) is equivalent to the usual percolation on a regular lattice, whereas the percolation on a
lattice with long range correlations shows a characteristic change of the universality class. In particular, a
critical exponent8 was detected, which is significantly greater than the usual expg@gRiom. [S1063-
651X(96)09706-1

PACS numbgs): 05.50+q, 02.70.Lg, 05.70.Jk

[. INTRODUCTION neous spatial distribution of free lattice sites. The
inhomogeneity can be characterized by the well known static

The formation of molecular network&or instance the structure factoS(k), which is a usual characteristic quantity
formation of a gel starting from monomersan be described of the lattice disorder.
in an obvious way by using the percolation concept. The The following considerations are confined to the numeri-
classical percolation model is based on a regular lattic€al simulation of two types of disorder, i.e., short range dis-
(translation symmetiy The lattice site corresponds to mono- order
mers, whereas lattice links are latent bonds. In the course of S(k) ~ const 1)
the network formation these latent bonds are transformed
into real _boan. T_hus, the occupation probabifityfraction _and long range disorder
of occupied link$ is the usual measure for the closed chemi-
cal bonds. Analytical1,2] and numerica[3] investigations
show the well known critical behavior near the sol-gel tran- S(k)~ K2 @)
sition.

On the other hand, many network formation processes argf available sites. The most famous example of the presently
realized on lattices, where only a part of the lattice points is
occupied by monomers, i.e., we have a dilute lattice. For
instance, such a situation is given by various versions of the
interpenetrating networdPN) formation, e.g., if a polymer
network of component A is swollen by monomers of a sec-
ond component B. If this system has reached the equilibrium - xg
state, the formation of the subnetwork B is started by an 'y
external initialization(e.g., radiation initialization Thus the 3 \
formation of B can be interpreted as a percolation procedure N
on a diluted latticgnote that the vacancies of such a dilute \ \
lattice are these sites, which are occupied by monomers of \ !
type A). \

The simplest case is the bond percolation on a dilute lat- -1
tice [4—7] with a random distribution of the available lattice
sites, i.e., a lattice site is occupied by a vacancy with the :
probability p independent on another sites, i.e., the density of ‘
free lattice sites is given by ip (see Fig. 1 Thus, one FIG. 1. Cluster on the square lattice for the bond percolation
obtains a set of inaccessible borf@gich are neighbored at proplem with defects. A lattice site is occupiéibts by a vacancy
least to one vacangyand the percolation procedure is con- (defecy with probability p (density of vacancigs Such a defect is
fined to the remaining latent bong@such bonds connect two neighbored by prohibited bondeouble ling, which cannot be oc-
neighbored lattice sites, which are not occupied by vacaneupied by a real bond during the percolation procedure. All other
cies. A more general situation in comparison to the perco-bonds can be occupied with the probabilitythick lines or empty
lation on a random dilute lattice is given by an inhomoge-(thin lines.
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studied long range and short range disorder is the Isingritical indices

model: at the critical point the correlation function of parallel
spins decays with a power law similar ().
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FIG. 2. Examples for configuration
of defect distribution on a 200200
square lattice. Occupied sites of the
bond lattice (defect$ correspond with
dots.(a) shows a random distribution of
defects,(b) presents the same situation
[(a] after the optimization with respect

Short range disorddd] has the same percolation behav- Z
ior as the usual percolation on a regular lattice, whereas
new universality clas§8] was predicted for the percolation
on a dilute lattice with long range correlations. o
An € expansion €=6—d) near the critical dimension
d.=6 in terms of the renormalization group approach leads,
to the following representation of the critical indices under _
consideration of the two cases of disorder:

to the static structure factor
S=a/k?+b, a~7.5x10.
classical short range long range
(Caley tree disorder disorder
0 — 56+ 0(€?) o(€)
3 stzeto(ed)  3t+zeto(ed)
1 1-3e+0(e) 1+0(e)
1 1+ %E+0(62) 1+%6+O(62)
-1 _1+%E+0(62) —1—:116-1—0(62)
2 2+%e+0(e?)  2+ie+0(e?)
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FIG. 3. Structure factor of Fig.(d) (X) and Fig. Zb) (O); the broken line— — is a fit for S(k) with the two free parameteis and

b [see Eq(3)]. k is the length of the wave vector.
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FIG. 4. (a) Finite-size scaling plots for the
mass of the infinite clustévl(p) on a lattice with
a defect concentratiop=0.3. p is the occupa-
tion probability,L=200 (), L=400 (O), and
L=600 (A): (b) M=LA"*"M(p) is plotted versus
p~=(p—pcLY” with the exponents3=0.14
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The aim of this paper is the numerical verification of renor-by using a Metropolis algorithri9] under the optimization
malization group for the percolation on dilute lattices with condition thatS(k) approaches the functional structuf®.

long range disorder in two and three dimensions. ThereforeThis procedure consists in a series of elementary steps such
we use a bond percolation model on squate ) and cubic that, starting from the initial configuration of free sites, fur-
(d=23) lattices, respectively, with a stochastic distribution ofther states are generated which are ultimately distributed ac-
free lattice siteddetermined by the static structure factor cording to the static structure fact¢8). Note that an el-
S(k), see Fig. 1. Note that each vacancy excludes the nearementary step corresponds to a randomly chosen
est neighbored bonds of the lattice from the percolation prodisplacement of a randomly chosen vacancy, i.e., the total
cedure and changes the original topology of the bond latticenumber of vacancie@nd therefore the density of vacancies

Furthermore, we use the static structure fa&¢k): p) is conserved.
Each elementary step leads to a change of the actual static

structure factor. The deviation from the desirable final static
structure factor(3) with given parameters andb can be
described by the measure

S(k)=%+b (3

with the free parametera and b and the wave vectok,

which combineg1) and(2) to a more general representation.

Note thatk is here a dimensionless quantity, i.e., the wave Q=E
vector is defined in terms of the lattice uwnit k/—k. K

2

a
Sac(k)— PH)
If the static structure factor after one elementary process ap-
proaches the final functional for@), i.e., Qnew<Qoi4, the

The generation of the lattice structure starts from a rannew configuration is accepted, otherwise the new configura-
dom distribution of defects and free lattice sites, respection is rejected with a probability 4 exp{(Qgiq—Qnew/T}-
tively. Thus the static structure fact8(k) of the initial dis- The “temperature” is the control parameter of the proce-

tribution of free sites corresponds to the functional structuredure, which decreases very slowly during the Metropolis al-
(1), see Fig. Ba). The positions of the vacancies are changedyorithm. Note that this decreasing is similar to a simulated

II. NUMERICAL GENERATION OF THE DISORDER
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annealing of thermodynamical systems, which leads finally
to a freeze in of the ground state.

However, the aim of the presented Metropolis algorithm 08
is the realization of the minimum mean square deviation of

the actual static structure fact&,.(k) with respect to the 0.6
static structure factof3d), ] (a)
0.4 7 . .
a 2 ] D"—‘ o« '
> [Sac(k)— F+b) —min. (4) 0.2 - R .
Kk d DQ”
0.0 wmﬁgg;f:;ﬁzﬁ?:auuwﬂ"“—
It is convenient to realize the optimization by the following 06 0.7 0.8 09
two subroutines: »

(i) The first part of the optimization procedure considers
only the long range correlationdow k); short scales are
ignored.(ii) After reaching a satisfactory functional structure
of S,.(k) for the long range correlations, the optimization of
the short scale structure is realized.
The result is a stochastic structure of the dilute lattice with
long range correlationg=ig. 2(b)]. Figure 3 shows the static M
structure factor for randomly distributed free sitesed as
initial configuration and the same system after realization of 087

the optimization procedure.
0.6

lll. PERCOLATION 0.4 1

The bond percolation procedure was simulated on a dilute ]
lattice (with a given static structure facfotaking into ac- 0.27
count free boundary conditions. All averages are realized
over 20 different defect distributionquenched average 0.0 meeee . '
with the same static structure fac{® and over 100 various -0.1 0.0 0.1 0.2
percolation configurations for each actual defect structure.

The massM(p) of the infinite percolation cluster and the
second moment

P—pc

FIG. 5. (a) Effect of variation of the defect concentratipnon
the percolation probability on a square lattice wltk=200; OI:
p=0.2;0: p=0.25;A: p=0.3;L=200.(b) M(p) is plotted versus
3 nCyn? p—p. of the data from(a).

>nChn

M(p)=

with the critical indices8 and v [3] of the usual percolation

(c, is the concentration of clusters with the massare  Problem leads a good superpositipfig. 4(b)]. Only the
computed as a function of the occupation dengitywith nonuniversal pe.rcollation threshatd is under the influence
respect to the total number of latent bohdsote thatp is  Of the random dilution. _
the control parameter of the bond percolation growth pro- The variation of the defect density corresponds also
cess. only to a change op., see Fig. a). After a reshifting
The results of the percolation on a diluted lattice with Ap=—p. of the functionsM(p) we obtain an equivalent
short range defect correlatioflandom diluted latticeare  behavior neap—p.=0. Clearly, different defect densities
well known [4], and we use this version as a test of thelead to different lattice topologies. This is the origin for the
numerical algorithm and as a reference model in comparisofplitting of the master curves aboye.
to the bond percolation on a lattice with long range correla- Figure 6 shows the influence of the paramedeflong
tions. As expected, the random distribution of available latrange defect distributions, E(B)]. We present here the mass
tice sites shows no influence to the critical indices. This conof the infinite clusterM(p) on a 200<200 lattice with a
servation of the universality class was illustrated by the casdefect concentratiop=0.2 for an increasin@. The slope
of a two-dimensional dilute lattice with a concentration of nearp, decreases with increasirsgy reaches a minimum at
defectsp=0.3. Figure 4a) showsM (p) for different lattices o, and increases for higher. Note that fora>a, the
sizesL =200, L =400, andL =600. The finite size scaling massM(p) converges fop—1 to a new limit[Fig. 6a)].
[10] The same effect is observable for the second moment of the
cluster size distributiorM ,(p) (weight averaged molecular
B=(p-p )L (5) weight of the sol fractiopy where the maximum oM ,(p)
¢ ' was shifted to lower values &>a,,;. Furthermore, for
_ a>aqp; and p—1, My(p) converges to a finite value,
M=ML?", (6)  whereasM,(p) vanishes for smala(a<a,,) and p—1
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FIG. 7. Two-dimensional percolation with minimal slope near
p. [L=600, p=0.3, average over 15 distributions of defects
(quenched averagewith 50 percolation sweeps per structure
M(p) (@) andM,(p) (b) are represented for randor®§ and long
range structure(().

FIG. 6. Influence of different defect distributioigiven by the
variation of the parameteax) to M(p) (a) andM, (b) on a lattice
with fixed L=200 and p=0.3: The parametema is given by
a=0.0 (random distribution, full ling a=2.5x10" (O),
a=7.5x10" (O), a=15.0x 10" (A), anda=30.0x 10" (X).

) ) o _ . tion with random distributed defectai€0).
[Fig. 6(b)]. This fact indicates the special meaningag;, For the computation of the critical exponegt (which
which corresponds to the minimum slope the slope ofyetermines the scaling behavior of the infinite cluster mass
M(p) nearp.. Fora<ao the defects disturb only lattice e yse the typical scaling region, indicated by the region
structure, but there exist no large isolated clusters of freeatween the maximum and the onset of the foot of the sec-
lattice sites. Thus, the infinite cluster of the bond percolation,,q momen ,(p). Figure 9 shows a three parameter fit of

behaves like the infinite cluster on a regular lattice. Fory,g massM (p) in this region by using the scaling function
a>a,p, high density areas of defects cut large single clus-

ters from the infinite cluster permanently, i.e., the topological M =co(p—pe)”.
connectivity of the lattice is violated. The result is an in-
creasing number of isolated clustesith a relative small The percolation on a random diluted lattice is determined
number of defects in the bulkor p—1. This leads to the [Fig. (@] by the approach
further conclusion that the infinite clustéar better the clus-
ter which connects the surfaces of the finite simulation vol- Brangom=0.2£0.1  (d=2)
ume grows neap, for sufficiently _hig_ha> Qopt IN the same and[Fig. Ab)]
way asM(p) for total randomly distributed defectai€0),
and only the percolation threshold is shiftdelg. 6(a)].. Brandom=0.5+0.1 (d=3).

Therefore, a dilute lattice with long range correlations and
without a violation of the connectivity is obtained for Clearly, the error bars are very high, but a finite size scaling
a~a,p;. In the present example we hasg,=7.5X 107, [3] leads to the more serious resuf8s,,qom=0.14+0.01

For the following simulations we use defect configura-(d=2) and B;2n4om=0.4+0.02 (d=3). Note that a maxi-
tions withp=0.3 (d=2) andp=0.6 (d=3) and a parameter mum lengthL =600 (d=2) andL =50 (d=23), respectively,
a~a,p;. The percolation procedures are realized in two ands sufficient enough to obtain these values and the corre-
three dimensions with field sizes 6R®00 and sponding error bars. This result is in good agreement with
30X 30X 30, respectively. Figures 7 and 8 shdw(p) and  the well known result§4], e.g., the critical exponents for the
M,(p) for structured latticeglong range correlation of the percolation on a random diluted lattice and on a nondilute
free lattice sitepwith a~a, in comparison to the percola- lattice are the equivalent.
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FIG. 8. Three-dimensional percolation with=30, p=0.3 (av- FIG. 9. Fit of M(p) for Fig. 7(a) and Fig. &a). (a) d=2 with
erage over 30 defect configurations with 100 percolation sweeps pégndom ©) and long range defect distribution]); (b) d=3 with
structurg for M(p) () and M,(p) (b) for random ©) and long  fandom (<) and long range defect distributior.
range structure(().

] o . algorithm[9] (which was used for creation of the long range

Figures 7 and 8 show the significant influence of the longyqrejated structujeincreases rapidly with increasing.
range correlation of the dilute lattice to the scahng behaworFrom this factL =600 (d=2) andL=50 (d=3) are a rea-

Of. M(p) andM3(p). M(p) grows abovep. approximately sonable optimum length for the numerical calculation of the
with critical exponents. The resultg) and(8) indicate a charac-
Beiruc=0.4+0.1 (d=2) (7)  teristic change of the scaling behavior and therefore of the
universality class between the behavior on a dilute lattice
and with long range distribution of the free sites to a random
diluted lattice(short range correlatiopswhich is the main
Bstruc=0.920.1  (d=3). (8 result of this paper.

L : Clearly, the difference between the mass of the infinite
These results correspond also to the finite size apprOXIma(flustersM( ) vanishes in both casdfong range and short
tion, but the stability of this method is weak in comparison to P 9 9

the case of a random dilute lattice with short range correla@N9¢ Q|str|but|(_)n of free lattice sifefor pﬂl. (5‘*_’ F|g_5. 7
tions. i.e.. the error bars are of the same order as in th@nd 8, i.e., the influence structure of the lattice site distribu-

simple approaclf7) and (8). tion to the infinite cluster remains relevant only for large
A higher precision is only possible by using larger length.Scalesiwhich act neapc), which is how it was predicted in
On the other hand, the computation time for the Metropolis{s]-
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