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The quenched percolation problem on a dilute lattice with a given random structure of vacancies is analyzed
by numerical simulations ind52 andd53. The distribution of the sites of the dilute lattice satisfies the static
structure factorS(k)5ak221b and contains short range (a50) and long range (a@0) effects, respectively.
The numerical simulation shows that the critical behavior of the percolation on lattices with short range
correlations (a50) is equivalent to the usual percolation on a regular lattice, whereas the percolation on a
lattice with long range correlations shows a characteristic change of the universality class. In particular, a
critical exponentb was detected, which is significantly greater than the usual exponentb random. @S1063-
651X~96!09706-1#

PACS number~s!: 05.50.1q, 02.70.Lq, 05.70.Jk

I. INTRODUCTION

The formation of molecular networks~for instance the
formation of a gel starting from monomers! can be described
in an obvious way by using the percolation concept. The
classical percolation model is based on a regular lattice
~translation symmetry!. The lattice site corresponds to mono-
mers, whereas lattice links are latent bonds. In the course of
the network formation these latent bonds are transformed
into real bonds. Thus, the occupation probabilityp ~fraction
of occupied links! is the usual measure for the closed chemi-
cal bonds. Analytical@1,2# and numerical@3# investigations
show the well known critical behavior near the sol-gel tran-
sition.

On the other hand, many network formation processes are
realized on lattices, where only a part of the lattice points is
occupied by monomers, i.e., we have a dilute lattice. For
instance, such a situation is given by various versions of the
interpenetrating network~IPN! formation, e.g., if a polymer
network of component A is swollen by monomers of a sec-
ond component B. If this system has reached the equilibrium
state, the formation of the subnetwork B is started by an
external initialization~e.g., radiation initialization!. Thus the
formation of B can be interpreted as a percolation procedure
on a diluted lattice~note that the vacancies of such a dilute
lattice are these sites, which are occupied by monomers of
type A!.

The simplest case is the bond percolation on a dilute lat-
tice @4–7# with a random distribution of the available lattice
sites, i.e., a lattice site is occupied by a vacancy with the
probabilityr independent on another sites, i.e., the density of
free lattice sites is given by 12r ~see Fig. 1!. Thus, one
obtains a set of inaccessible bonds~which are neighbored at
least to one vacancy! and the percolation procedure is con-
fined to the remaining latent bonds~such bonds connect two
neighbored lattice sites, which are not occupied by vacan-
cies!. A more general situation in comparison to the perco-
lation on a random dilute lattice is given by an inhomoge-

neous spatial distribution of free lattice sites. The
inhomogeneity can be characterized by the well known static
structure factorS(k), which is a usual characteristic quantity
of the lattice disorder.

The following considerations are confined to the numeri-
cal simulation of two types of disorder, i.e., short range dis-
order

S~k!;const ~1!

and long range disorder

S~k!;
1

k2
~2!

of available sites. The most famous example of the presently

FIG. 1. Cluster on the square lattice for the bond percolation
problem with defects. A lattice site is occupied~dots! by a vacancy
~defect! with probability r ~density of vacancies!. Such a defect is
neighbored by prohibited bonds~double line!, which cannot be oc-
cupied by a real bond during the percolation procedure. All other
bonds can be occupied with the probabilityp ~thick lines! or empty
~thin lines!.
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studied long range and short range disorder is the Ising
model: at the critical point the correlation function of parallel
spins decays with a power law similar to~2!.

Short range disorder@4# has the same percolation behav-
ior as the usual percolation on a regular lattice, whereas a
new universality class@8# was predicted for the percolation
on a dilute lattice with long range correlations.

An e expansion (e562d) near the critical dimension
dc56 in terms of the renormalization group approach leads
to the following representation of the critical indices under
consideration of the two cases of disorder:

critical indices classical
~Caley tree!

short range
disorder

long range
disorder

h 0 2
1
21e1o(e2) o(e3)

n 1
2

1
21

5
84e1o(e2) 1

21
1
8e1o(e2)

b 1 12
1
7e1o(e2) 11o(e3)

g 1 11
1
7e1o(e2) 11

1
4e1o(e2)

a 21 211
1
7e1o(e2) 212

1
4e1o(e2)

d 2 21
2
7e1o(e2) 21

1
4e1o(e2)

s 1
2

1
21o(e2) 1

22
1
16e1o(e2)

t 5
2

5
22

1
14e1o(e2) 5

22
1
16e1o(e2)

FIG. 2. Examples for configuration
of defect distribution on a 2003200
square lattice. Occupied sites of the
bond lattice~defects! correspond with
dots.~a! shows a random distribution of
defects,~b! presents the same situation
@~a!# after the optimization with respect
to the static structure factor
S5a/k21b, a'7.53107.

FIG. 3. Structure factor of Fig. 2~a! (3) and Fig. 2~b! (s); the broken line22 is a fit for S(k) with the two free parametersa and
b @see Eq.~3!#. k is the length of the wave vector.
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The aim of this paper is the numerical verification of renor-
malization group for the percolation on dilute lattices with
long range disorder in two and three dimensions. Therefore,
we use a bond percolation model on square (d52) and cubic
(d53) lattices, respectively, with a stochastic distribution of
free lattice sites@determined by the static structure factor
S(k), see Fig. 1#. Note that each vacancy excludes the near-
est neighbored bonds of the lattice from the percolation pro-
cedure and changes the original topology of the bond lattice.

Furthermore, we use the static structure factorS(k):

S~k!5
a

k2
1b ~3!

with the free parametersa and b and the wave vectork,
which combines~1! and~2! to a more general representation.
Note thatk is here a dimensionless quantity, i.e., the wave
vector is defined in terms of the lattice unitl : kl →k.

II. NUMERICAL GENERATION OF THE DISORDER

The generation of the lattice structure starts from a ran-
dom distribution of defects and free lattice sites, respec-
tively. Thus the static structure factorS(k) of the initial dis-
tribution of free sites corresponds to the functional structure
~1!, see Fig. 2~a!. The positions of the vacancies are changed

by using a Metropolis algorithm@9# under the optimization
condition thatS(k) approaches the functional structure~3!.
This procedure consists in a series of elementary steps such
that, starting from the initial configuration of free sites, fur-
ther states are generated which are ultimately distributed ac-
cording to the static structure factor(3). Note that an el-
ementary step corresponds to a randomly chosen
displacement of a randomly chosen vacancy, i.e., the total
number of vacancies~and therefore the density of vacancies
r) is conserved.

Each elementary step leads to a change of the actual static
structure factor. The deviation from the desirable final static
structure factor~3! with given parametersa and b can be
described by the measure

Q5(
k

FSac~k!2S ak2 1bD G2.
If the static structure factor after one elementary process ap-
proaches the final functional form~3!, i.e.,Qnew,Qold , the
new configuration is accepted, otherwise the new configura-
tion is rejected with a probability 12exp$(Qold2Qnew)/T%.
The ‘‘temperature’’ is the control parameter of the proce-
dure, which decreases very slowly during the Metropolis al-
gorithm. Note that this decreasing is similar to a simulated

FIG. 4. ~a! Finite-size scaling plots for the
mass of the infinite clusterM (p) on a lattice with
a defect concentrationr50.3. p is the occupa-
tion probability,L5200 (h), L5400 (s), and
L5600 (D); ~b! M̃5Lb/nM (p) is plotted versus
p˜5(p2pc)L

1/n with the exponentsb50.14
andn51.33
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annealing of thermodynamical systems, which leads finally
to a freeze in of the ground state.

However, the aim of the presented Metropolis algorithm
is the realization of the minimum mean square deviation of
the actual static structure factorSac(k) with respect to the
static structure factor~3!,

(
k

FSac~k!2S ak2 1bD G2→min. ~4!

It is convenient to realize the optimization by the following
two subroutines:

~i! The first part of the optimization procedure considers
only the long range correlations~low k); short scales are
ignored.~ii ! After reaching a satisfactory functional structure
of Sac(k) for the long range correlations, the optimization of
the short scale structure is realized.

The result is a stochastic structure of the dilute lattice with
long range correlations@Fig. 2~b!#. Figure 3 shows the static
structure factor for randomly distributed free sites~used as
initial configuration! and the same system after realization of
the optimization procedure.

III. PERCOLATION

The bond percolation procedure was simulated on a dilute
lattice ~with a given static structure factor! taking into ac-
count free boundary conditions. All averages are realized
over 20 different defect distributions~quenched average!
with the same static structure factor~3! and over 100 various
percolation configurations for each actual defect structure.
The massM (p) of the infinite percolation cluster and the
second moment

M2~p!5
(ncnn

2

(ncnn

(cn is the concentration of clusters with the massn) are
computed as a function of the occupation densityp ~with
respect to the total number of latent bonds!. Note thatp is
the control parameter of the bond percolation growth pro-
cess.

The results of the percolation on a diluted lattice with
short range defect correlation~random diluted lattice! are
well known @4#, and we use this version as a test of the
numerical algorithm and as a reference model in comparison
to the bond percolation on a lattice with long range correla-
tions. As expected, the random distribution of available lat-
tice sites shows no influence to the critical indices. This con-
servation of the universality class was illustrated by the case
of a two-dimensional dilute lattice with a concentration of
defectsr50.3. Figure 4~a! showsM (p) for different lattices
sizesL5200, L5400, andL5600. The finite size scaling
@10#

p̃5~p2pc!L
1/n, ~5!

M̃5MLb/n, ~6!

with the critical indicesb andn @3# of the usual percolation
problem leads a good superposition@Fig. 4~b!#. Only the
nonuniversal percolation thresholdpc is under the influence
of the random dilution.

The variation of the defect densityr corresponds also
only to a change ofpc , see Fig. 5~a!. After a reshifting
Dp52pc of the functionsM (p) we obtain an equivalent
behavior nearp2pc50. Clearly, different defect densities
lead to different lattice topologies. This is the origin for the
splitting of the master curves abovepc .

Figure 6 shows the influence of the parametera @long
range defect distributions, Eq.~3!#. We present here the mass
of the infinite clusterM (p) on a 2003200 lattice with a
defect concentrationr50.2 for an increasinga. The slope
nearpc decreases with increasinga, reaches a minimum at
aopt , and increases for highera. Note that fora.aopt the
massM (p) converges forp→1 to a new limit @Fig. 6~a!#.
The same effect is observable for the second moment of the
cluster size distributionM2(p) ~weight averaged molecular
weight of the sol fraction!, where the maximum ofM2(p)
was shifted to lower values ata.aopt . Furthermore, for
a.aopt and p→1, M2(p) converges to a finite value,
whereasM2(p) vanishes for smalla(a,aopt) and p→1

FIG. 5. ~a! Effect of variation of the defect concentrationr on
the percolation probability on a square lattice withL5200; h:
r50.2;s: r50.25;D: r50.3;L5200.~b! M (p) is plotted versus
p2pc of the data from~a!.
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@Fig. 6~b!#. This fact indicates the special meaning ofaopt ,
which corresponds to the minimum slope the slope of
M (p) nearpc . For a,aopt the defects disturb only lattice
structure, but there exist no large isolated clusters of free
lattice sites. Thus, the infinite cluster of the bond percolation
behaves like the infinite cluster on a regular lattice. For
a.aopt , high density areas of defects cut large single clus-
ters from the infinite cluster permanently, i.e., the topological
connectivity of the lattice is violated. The result is an in-
creasing number of isolated clusters~with a relative small
number of defects in the bulk! for p→1. This leads to the
further conclusion that the infinite cluster~or better the clus-
ter which connects the surfaces of the finite simulation vol-
ume! grows nearpc for sufficiently higha.aopt in the same
way asM (p) for total randomly distributed defects (a50),
and only the percolation threshold is shifted@Fig. 6~a!#.

Therefore, a dilute lattice with long range correlations and
without a violation of the connectivity is obtained for
a'aopt . In the present example we haveaopt57.53107.

For the following simulations we use defect configura-
tions withr50.3 (d52) andr50.6 (d53) and a parameter
a'aopt . The percolation procedures are realized in two and
three dimensions with field sizes 6003600 and
30330330, respectively. Figures 7 and 8 showM (p) and
M2(p) for structured lattices~long range correlation of the
free lattice sites! with a'aopt in comparison to the percola-

tion with random distributed defects (a50).
For the computation of the critical exponentb ~which

determines the scaling behavior of the infinite cluster mass!
we use the typical scaling region, indicated by the region
between the maximum and the onset of the foot of the sec-
ond momentM2(p). Figure 9 shows a three parameter fit of
the massM (p) in this region by using the scaling function

M5c0~p2pc!
b.

The percolation on a random diluted lattice is determined
@Fig. 9~a!# by the approach

b random50.260.1 ~d52!

and @Fig. 9~b!#

b random50.560.1 ~d53!.

Clearly, the error bars are very high, but a finite size scaling
@3# leads to the more serious resultsb random50.1460.01
(d52) andb random50.460.02 (d53). Note that a maxi-
mum lengthL5600 (d52) andL550 (d53), respectively,
is sufficient enough to obtain these values and the corre-
sponding error bars. This result is in good agreement with
the well known results@4#, e.g., the critical exponents for the
percolation on a random diluted lattice and on a nondilute
lattice are the equivalent.

FIG. 6. Influence of different defect distributions~given by the
variation of the parametera) to M (p) ~a! andM2 ~b! on a lattice
with fixed L5200 and r50.3: The parametera is given by
a50.0 ~random distribution, full line!, a52.53107 (h),
a57.53107 (s), a515.03107 (D), anda530.03107 (3).

FIG. 7. Two-dimensional percolation with minimal slope near
pc @L5600, r50.3, average over 15 distributions of defects
~quenched average!, with 50 percolation sweeps per structure#.
M (p) ~a! andM2(p) ~b! are represented for random (s) and long
range structure (h).
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Figures 7 and 8 show the significant influence of the long
range correlation of the dilute lattice to the scaling behavior
of M (p) andM2(p). M (p) grows abovepc approximately
with

bstruc50.460.1 ~d52! ~7!

and

bstruc50.960.1 ~d53!. ~8!

These results correspond also to the finite size approxima-
tion, but the stability of this method is weak in comparison to
the case of a random dilute lattice with short range correla-
tions, i.e., the error bars are of the same order as in the
simple approach~7! and ~8!.

A higher precision is only possible by using larger length.
On the other hand, the computation time for the Metropolis

algorithm@9# ~which was used for creation of the long range
correlated structure! increases rapidly with increasingL.
From this factL5600 (d52) andL550 (d53) are a rea-
sonable optimum length for the numerical calculation of the
critical exponents. The results~7! and ~8! indicate a charac-
teristic change of the scaling behavior and therefore of the
universality class between the behavior on a dilute lattice
with long range distribution of the free sites to a random
diluted lattice~short range correlations!, which is the main
result of this paper.

Clearly, the difference between the mass of the infinite
clustersM (p) vanishes in both cases~long range and short
range distribution of free lattice sites! for p→1 ~see Figs. 7
and 8!, i.e., the influence structure of the lattice site distribu-
tion to the infinite cluster remains relevant only for large
scales~which act nearpc), which is how it was predicted in
@8#.
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